
Abstract Syntax Tree Implementation Idioms

Joel Jones
jones@cs.ua.edu

Department of Computer Science
University of Alabama

1 Context

You are implementing a language, and the language is sufficiently complex that a direct
source-to-source translation is not desirable. An appropriate form for representing the
essential characteristics of the structure of the input is needed.

A language defines a mapping from symbols to meaning. Many software imple-
mentation tasks are aided by specifying and implementing a domain-specific language.
For example, a common solution to distributing logic across disparate environments
is to encode the logic as a program in a domain-specific language and provide code
generators to translate the logic to the different environments [12], [13].

Language translators are typically described using “T” diagrams. A source lan-
guage S is translated into a target language T by an S-into-T translator expressed in im-
plementation language L. The problem these idioms address is how the source program
should be represented inside the translator, by using the constructs of the implementa-
tion language. These representations are constructed as a result of parsing the source
language.

2 Forces

• The target language (T) has been chosen. For example, C can be used if access
to low-level features is needed.

• The source language (S) has been partially designed and the complexity of the
translation process is already such that a direct translation from the source lan-
guage to the target language is not desired.

S T

L

→

Figure 1: T diagram

1



• An implementation language (L) for the translator has been chosen.

• As much as possible, the implementation language’s compiler should catch er-
rors in the implementation of the translator.

• Introducing new language elements in the source language should be easy.

3 Solution

Implement abstract syntax trees (ASTs) using implementation language specific id-
ioms. In the sections below, the language specific idioms are presented. In this section,
language independent information is given.

An abstract syntax tree (AST) captures the essential structure of the input in a tree
form, while omitting unnecessary syntactic details. ASTs can be distinguished from
concrete syntax trees by their omission of tree nodes to represent punctuation marks
such as semi-colons to terminate statements or commas to separate function arguments.
ASTs also omit tree nodes that represent unary productions in the grammar. Such
information is directly represented in ASTs by the structure of the tree.

ASTs can be created with hand-written parsers or by code produced by parser gen-
erators. ASTs are generally created bottom-up.

When designing the nodes of the tree, a common design choice is determining
the granularity of the representation of the AST. That is, whether all constructs of the
source language are represented as a different type of AST nodes or whether some con-
structs of the source language are represented with a common type of AST node and
differentiated using a value. One example of choosing the granularity of representation
is determining how to represent binary arithmetic operations. One choice is to have
a single binary operation tree node, which has as one of its attributes the operation,
e.g. “+”. The other choice is to have a tree node for every binary operation. In an
object-oriented language, this would results in classes like: AddBinary, SubtractBi-
nary, MultiplyBinary, etc. with an abstract super class of Binary. The second form is
preferred if there will be behavior associated with the tree nodes.

There are systems which will automatically generate AST implementations from
a little language, such as Zephyr ASDL [17] or by an integrated specification with a
parser generator, Eli [10]. In such systems, a simple specification of the tree-structure
of the AST is given and a program-generator reads this specification and generates code
for representing and creating the AST in some high-level language.

4 Resulting Context

With the implementation of the AST components complete, the subsequent phases of
the compiler can be implemented. In the simplest translations, the next stage would be
to traverse the ASTs and generate the target language. If the translation is more com-
plicated, then further decisions must be made as to which code transformations should
be performed on the ASTs and which should be done on some other intermediate form

2



(IR). Such code transformations may have the purpose of improving the run-time per-
formance of the target program or to ease the translation into the target language. Large
compilation systems typically perform semantic analysis on the AST, then translate the
AST into some other intermediate form immediately. These IRs would typically be ei-
ther some kind of register-transfer language or static-single assignment form. In some
translators, transformations may be performed on the ASTs first, performing an AST to
AST translation. Some examples would be loop transformations in FORTRAN com-
pilers or refactoring using tools such as the Refactoring Browser[16].

If transformations are performed on the ASTs, then a decision has to be made as to
whether to implement readers and writers for the AST. A human-readable form of the
AST can be useful for debugging or certain forms of program analysis.

A useful feature for an AST implementation is to have an instantiation of the
Builder pattern[8] with a function that will take strings to ASTs. These are useful
for generating test cases before the grammar is completed or when new language fea-
tures are being experimented with. One example is in the Marion system [4], where a
tree function was used to allow for the easy generation of function epilogues, using
a format string as the first argument, followed by a varying number of subsequent ar-
guments. By nesting calls to tree as arguments to tree, arbitrarily complex ASTs
could be generated.

5 Imperative Languages

5.1 Context

Strictly imperative languages, like C or Pascal, provide the least support for imple-
menting ASTs.

* * *
Avoid these languages if possible. If this isn’t possible, then implement the AST in a

disciplined fashion, making representation and naming choices uniformly.
* * *

5.2 Solution

GENERATORS

Use generator tools to create an AST implementation from a simple specification. The
input language for an AST generator will typically contain the name of the generic
node’s type, the name of all specific node’s types, and member names and types for
the specific nodes. One such tool is the generator for Abstract Definition Language
(ASDL) [17] which includes C as one of its output languages. It is also not hard to
build a simple version of such a tool using a scripting language such as AWK or Perl.
In addition to generating the data type declarations, an AST code generator should
also create “constructor” functions which take as arguments the children of the node
and return initialized instances of the specific nodes of the AST. For an example of an
ASDL specification, see the Appendix.

3



NODES AS VARIANT RECORDS

To represent the nodes of the AST in these languages, some form of variant record must
be used. In Pascal, the variant record is supported directly. In C, variant records can
be emulated using a struct with an enum member and a union member. The enclosing
record (struct) represents the generic node of the AST. The embedded records (mem-
bers of the union) represent the various specific nodes of the AST. For an example, see
the Appendix.

COMPILER CHECKED CASE STATEMENT DISPATCH

When code is written to dispatch on the type of an AST node, write this as a case or
switch statement, rather than as a sequence of cascading if statements. This allows for
the specification of a compile time check of the implementation code. Most Pascal and
C compilers have a compiler option that causes a message to be generated if a multi-
way branch on a variant record tag or enumerated type does not cover all possible
values. For instance, to insure that a C switch statement over a enum type is complete,
the gcc compiler has the -Wswitch option.

6 Functional Languages

6.1 Context

Functional programming languages provide good support for implementing ASTs.

* * *
The appropriate features differ between Scheme and ML. The use of user-defined

recursive datatypes are preferred. Scheme doe not support “datatypes” (“types”) as
ML (Haskell) does.

* * *

6.2 Solution

NODES AS DEFINE OVER LET OVER DEFINE

In Scheme, use closures to provide run-time checks of coverage. To represent ASTs
and the functions on them in Scheme, use define-over-let-over-define[1, pp. 167–175].
This style embeds local state and the associated functions inside a constructor function
definition. For the local state, contained in the let, define a binding for every child.
Any attempt to execute a function that isn’t supported will generate an error, rather
than failing silently.

NODES AS DATATYPES

In ML use a datatype declaration, which provides for compile-time checks [15]. The
datatype represents the general AST node type and each of the constructors represent

4



the specific AST node type. For each constructor, list the type of the children as one of
the constructor arguments.

ARGUMENT PATTERN MATCHING

In ML, when defining functions over the ASTs, use function argument pattern matching
over the AST datatype. The ML compiler will give a compile time warning if any of
the functions are not exhaustive over the AST constructors. See the Appendix for an
example.

7 Object-oriented Languages

7.1 Context

Object oriented languages provide features that are better suited for representing ASTs
than do imperative languages like C and Pascal. These features should be used in
preference to enumerated types, unions, etc.

* * *
When implementing ASTs using an object-oriented language, polymorphism, rather
than switch statements, should be used to dispatch on the type of the elements of the

tree.
* * *

7.2 Solution

IMPLEMENT TREE NODES AS CLASSES

Implement the elements of the tree as instances of classes. Instance variables of the
AST classes are used to represent the children of the node. Instance variables of leaf
nodes are used to hold information about the node’s value, e.g. literal values, references
into a symbol table, etc. All of the AST node classes are directly or indirectly derived
from an abstract base class. Identify classes that share common attributes and use the
”Extract Superclass” refactoring to create a common abstract base class[7].

AST CLASS NAMES

In naming the various classes, first give precedence to any local coding conventions.
In the absence of their direction, the following guidelines should be followed. First, if
there is only one AST in the program, name the abstract base class that is the root of
the AST node inheritance hierarchy ”AST.” If there are multiple AST hierarchies, then
name them ”FooAST”, ”BarAST”, etc. Name other abstract base classes based upon
the common feature that they represent, e.g. Declaration The classes derived from
the other base classes should be named by the concatenation of their specific feature
and their immediate base class, e.g. VarDeclaration.

5



SMART NODES/DATA-ONLY NODES

There are two alternatives in designing AST nodes—”smart” objects or ”dumb” objects[3].
If there is only one client for the AST, the smart object approach is used. There, the
nodes of the AST provide a method for performing the work the client requires. If there
are multiple clients, then dumb objects should be used. With dumb objects, there are
few or no methods implemented by the AST nodes.

AST VISITOR

To perform work with the ASTs, the VISITOR pattern should be used. To instantiate the
VISITOR pattern for the Implement AST pattern, a visit method is defined in each
AST. The visit method has a parameter for the Visitor object. The Visitor object
might do type-checking, code-generation, etc.

PROGRAMMATIC AST CLASS GENERATION

There exist parser generators that will produce class definitions for the abstract syntax
tree from the parser specification, in addition to generating the parser. For C++, there is
YACC++ [6], which generates C++ code. For Java, there is SLY [18], which generates
Java.

8 Other Details

Obviously, these idioms are embedded in the rich context of compilers and other trans-
lation techniques. Just as automating the process of generating AST implementations
is a useful time saver, parser generators are another. Many of these exist for imper-
ative languages, such as yacc[14], and bison[14], as well as those for object-oriented
languages, t-gen[9], JavaCup[11], and SmaCC[5], and for functional languages, such
as ml-yacc[2]. To generate ASTs using these parser generators, calls to the AST con-
structors are inserted into the action code section of the parser-specification.

9 Related Patterns

These idioms elaborate Interpreter [8] by giving directives on how to create abstract
syntax trees in various different languages.

These idioms are similar to Composite [8] in that they specify how to build tree-
like structures. However, Composite is oriented towards composition of leaf nodes with
there being only a single container class, whereas ASTs tend to have mostly container
classes. Furthermore, a generic child iteration pattern is rarely useful, as the children
of a node have a much more constrained relationship to their parent.

The Visitor [8] pattern is commonly used to implement traversals when using dumb
objects.

The Tabular Code [12] pattern can be used to alleviate the tedium of coding con-
structors, destructors and accessors directly.

6



10 Acknowledgments

Thanks go to the shepherd, Alejandra Garrido, for helping to improve the presentation
and pointing me to several works that I was previously unfamiliar with. Thanks also
go to Don Yessick for several (heated) discussions on the proper role of inheritance in
implementing ASTs in object-oriented systems.

References

[1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Inter-
pretation of Computer Programs. MIT Press, USA, 1985.

[2] Andrew Appel and David R. Tarditi. Ml-yacc user’s manual version 2.3.
http://www.cs.princeton.edu/ appel/modern/ml/ml-yacc/manual.html, 1994.

[3] Andrew W. Appel. modern compiler implementation in Java. Cambridge Uni-
versity Press, 1998.

[4] David Gordon Bradlee. Retargetable instruction scheduling for pipelined proces-
sors. Technical Report TR 91-08-07, University of Washington, 1991.

[5] John Brant and Don Roberts. SmaCC (Smalltalk compiler-compiler).
http://www.refactory.com/Software/SmaCC/.

[6] Compiler Resources Inc’s. Yacc++ R© and the language objects library.
http://world.std.com/ compres/, 2003.

[7] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refac-
toring: Improving the Design of Existing Code. Addison Wesley, 1999.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns. Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1994.
ISBN 0-201-63361-2.

[9] J. O. Graver. The evolution of an object-oriented compiler framework. Software—
Practice and Experience, 22(7):519–535, July 1992.

[10] Robert W. Gray, Vincent P. Heuring, Steven P. Levi, Anthony M. Sloane, and
William M. Waite. Eli: A complete, flexible compiler construction system. Com-
munications of the ACM, 35(2):121–130, February 1992.

[11] Scott Hudson. Java cup LALR parser generator for Java.
http://www.cs.princeton.edu/˜appel/modern/Java/CUP/, 1999.

[12] Joel Jones. Tabular code generation: Write once, generate many. Pattern Lan-
guages of Program Design, 2002.

[13] Sam Kamin. Language implementation via lightweight embedded program gen-
erators (extended abstract). http://citeseer.nj.nec.com/11897.html.

7



[14] John Levine, Tony Mason, and Doug Brown. lex & yacc. O’Reilly, 2nd edition,
1992.

[15] Laurence C. Paulson. ML for the Working Programmer. Cambridge University
Press, New York, NY, second edition, 1996.

[16] Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for Smalltalk.
Theory and Practice of Object Systems (TAPOS), 3(4):253–263, 1997.

[17] Daniel C. Wang, Andrew W. Appel, Jeff L. Korn, and Christopher S. Serra. The
Zephyr abstract syntax description language. In USENIX, editor, Proceedings
of the Conference on Domain-Specific Languages, October 15–17, 1997, Santa
Barbara, California, pages ??–??, Berkeley, CA, USA, 1997. USENIX.

[18] Don Yessick and Joel Jones. Reinventing the wheel or not yet another compiler
compiler compiler. In Southeast ACM Conference, 2002.

A Appendix

The following sections give examples for the languages discussed in the body. The
example is taken from the discussion of Interpreter from [8].

A.1 Zephyr ASDL

booleanexp = Variable(identifier id)
| Constant(boolean b)
| OrExp(booleanexp left, booleanexp right)
| AndExp(booleanexp left, booleanexp right)
| NotExp(booleanexp exp)

A.2 C

The “.h” file:

typedef struct booleanExp *booleanExp_ty;
typedef char* identifier;
typedef int boolean;

enum booleanExp_type {
VARIABLE, CONSTANT, OREXP, ANDEXP, NOTEXP

} ;

struct booleanExp {
enum booleanExp_type kind;
union {

struct { identifier id; } variable;
struct { boolean b; } constant;

8



struct {
booleanExp_ty left;
booleanExp_ty right;

} orExp;
struct {

booleanExp_ty left;
booleanExp_ty right;

} andExp;
struct { booleanExp_ty exp; } notExp;

} u;
};

The “.c” file:

#include "booleanExp.h"
booleanExp_ty
mkVariable(identifier id) {

booleanExp_ty p;

p = (booleanExp_ty) malloc(sizeof(*p));
p->kind = VARIABLE;
p->u.variable.id = id;
return p;

}
booleanExp_ty
mkConstant(boolean b) { /* ... */ }
/* ... */

A.3 ML

type identifier = string;
datatype booleanExp = Variable of identifier

| Constant of bool
| OrExp of (booleanExp * booleanExp)
| AndExp of (booleanExp * booleanExp)
| NotExp of booleanExp;

A.4 Java

abstract class AST {
}

public class Variable extends AST {
public Identifier id;
public Variable(Identifier id) {

this.id = id;
}

9



}

public class Constant extends AST { /* ... */ }

public class OrExp extends AST { /* ... */ }

10


